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SUMMARY

In this paper, the smoothed particle hydrodynamics (SPH) method is applied to the solution of shallow
water equations. A brief review of the method in its standard form is �rst described then a variational
formulation using SPH interpolation is discussed. A new technique based on the Riemann solver is
introduced to improve the stability of the method. This technique leads to better results. The treatment
of solid boundary conditions is discussed but remains an open problem for general geometries. The
dam-break problem with a �at bed is used as a benchmark test. Copyright ? 2004 John Wiley & Sons,
Ltd.

KEY WORDS: SPH; meshless methods; free surface; shallow water; Riemann solver

1. INTRODUCTION

Free surface �ows are often numerically solved using Eulerian approaches such as the �nite
volume or �nite element methods. However, some di�culties related mainly to accuracy are
faced in the presence of moving boundaries, such as the wetting–drying phenomena particu-
larly important in �ood simulations. In this paper, a purely Lagrangian and meshless approach,
the smoothed particle hydrodynamics method (SPH), is investigated to explore its ability to
solve shallow-water equations (SWE) in one and two space dimensions. SPH, the �rst and
simplest of the meshless methods, is easy to implement. A new technique based on the use
of Riemann solver is introduced to improve the stability of the method.
The SPH method was �rst introduced by Lucy [1] and Gingold and Monaghan [2] to simu-

late astrophysical problems. By the end of the 1980s and in the early 1990s, the SPH method
became widely used with some other meshless methods especially in the simulation of high
speed impacts and metal forming processes, see for instance the following references [3–7].

∗Correspondence to: Azzeddine Soula��mani, D�epartement de G�enie M�ecanique, �Ecole de technologie sup�erieure;
1100 Notre-Dame Ouest, Montr�eal, Qu�e, Canada H3C 1K3.

†E-mail: azzeddine.soulaimani@etsmtl.ca
‡This research was funded by Hydro-Qu�ebec and the National Sciences and Engineering Research Council of Canada
(NSERC).

§E-mail: riadh.ata@etsmtl.ca

Copyright ? 2004 John Wiley & Sons, Ltd. Received 17 October 2003



140 R. ATA AND A. SOULA�IMANI

For more details on the SPH method and its applications, we refer to [8]. A thorough review
of other classes of meshless methods can be found in Reference [9]. Inutsuka introduced a
Riemann solver in the SPH formulation to evaluate the force acting on each particle [10].
Cha et al. [11] gave a new formulation of SPH (called GPH, Godunov-type particle hydrody-
namics). GPH has almost the same philosophy as SPH but uses a Riemann solver to obtain
the hydrodynamic acceleration and the rate of change of the internal energy. SPH is a truly
meshless method based on the transformation of di�erential equations into integral ones which
are then discretized using a distribution of moving particles. It has given relatively good re-
sults in the applications cited above. However, in its standard form, a problem remains with
stability and serious di�culties are faced in the treatment of the solid boundary conditions
[9], especially with irregular boundaries. These two issues will be discussed in this paper.
The next section brie�y reviews the standard SPH method and shows its application to in-

viscid shallow water �ows over �at beds. Section 3 describes the development of a stablized
variational formulation which employs the SPH approximation. In Section 4, we discuss the
boundary conditions issue and several numerical aspects. The last section presents computa-
tional results for one- and two-dimensional dam break problems, and draws conclusions.

2. PROBLEM SETTING

Several works were devoted to free surface �ows applying the SPH method, for example,
References [12–14]. The mathematical model was based on the gas dynamic equations using
an isentropic state law

p= k
[(

�
�0

)�
− 1
]

where p is the pressure, � is the density, � is a parameter chosen as �=7. The bulk modulus
employed is derived so that the Mach number of the �ow is small (typically 0.1–0.01).
Wang et al. [15] used the standard SPH method for one-dimensional SWE. Unfortunately,
the results reported are ‘unreproducible’. The numerical solution matches exact one perfectly,
even in the presence of shocks. It is well documented [7, 8, 11, 16, 17], that some oscillations
are present near the shocks even using the Monaghan shock-capturing viscosity.
In the following, we seek the numerical solution of the inviscid SWE in the non-conservative

form neglecting the bed slope and friction terms (see Reference [18] for the application of
SWE with source terms using Godunov methods)

Dh
Dt
+ h∇ · u = 0 (1)

Du
Dt
+ g∇h = 0 (2)

where h, u and g are, respectively, water height, depth-averaged velocity, and gravity. D=Dt
refers to the total derivative.
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STABILIZED SPH METHOD 141

2.1. Review of the SPH method

The SPH method is based on the following identity: any generic function f(x) can be obtained
using the Dirac delta distribution centred at x as

f(x)=
∫
�
f(s)�(x − s) ds (3)

where � is the domain of de�nition of f. In practice, the Dirac distribution is approximated
by a more regular function W called the ‘kernel’ which has to satisfy several mathematical
constraints [19, 20],

f(x)�
∫
�
f(s)W (x − s) ds (4)

The kernel depends on the variable x − s and on a second variable l, called the smoothing
length. Gauss and spline kernels are commonly used in practice, have the important property
of being symmetric kernels (or even kernels, i.e. W (x − s)=W (s − x)) with antisymmetric
gradient (i.e. @W (x − s)=@x=−@W (x − s)=@s). Among the constraints on the kernel are:
(normalized kernel)

∫
�W (x − s) ds=1 and (kernel with compact support) W (x − s)=0 for

‖x− s‖¿�l, with � a positive integer. Using an integration by parts and the compact support
property of the kernel, the derivative of f with respect to the variable xm is given by

@f(x)
@xm

�
∫
�

@f(s)
@sm

W (x − s) ds=−
∫
�
f(s)

@W (x − s)
@sm

ds=
∫
�
f(s)

@W (x − s)
@xm

ds (5)

Applying a Riemann quadrature to evaluate the integral in (4) gives the SPH approximation
for f as

fa(x)=
N∑
j=1

mj
�j
f(xj)W (x − xj) (6)

where the superscript a denotes the approximant, N is the number of used particles with �xed
masses mj and with positions xj. The variable �j refers to the density of the particle j. Note
that the ratio mj=�j is the volume Vj of particle j, which may vary for compressible media.
Also, using Riemann quadrature to evaluate the integral in (5), the co-ordinate derivatives

are computed as (
@f(x)
@xm

)a
=

N∑
j=1
Vjf(xj)

@W (x − xj)
@xm

(7)

The expression of the co-ordinates derivatives (@f=@xm)a can also be obtained by directly
di�erentiating Equation (6), this provides the identity (@f=@xm)a = @fa=@xm. This property is
not valid if the kernel does not have antisymmetric gradient. In fact, to ensure the zero-order
consistency (or the so-called partition of unity) conditions in a discrete form, namely

N∑
j=1
VjW (x − xj)=1
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142 R. ATA AND A. SOULA�IMANI

and

N∑
j=1
Vj ∇W (x − xj)=0

a corrected kernel (Shepard function) is often used as [14, 21]

W c(x − xi)=C(x)W (x − xi) (8)

with C−1(x)=
∑N

j=1 VjW (x−xj). However, this corrected kernel is not in general symmetric
(even if the original kernel is symmetric), and its gradient is not antisymmetric. Thus, care
must be taken to compute the co-ordinate derivatives. For instance, according to de�nition
(4) and using the above corrected kernel, with W symmetric and with compact support, it
follows:

@f(x)
@xm

�
∫
�

@f(s)
@sm

W c(x − s) ds=−
∫
�
f(s)C(x)

@W (x − s)
@sm

ds

=
∫
�
f(s)C(x)

@W (x − s)
@xm

ds

Thus, applying Riemann quadrature the approximate derivative is written as(
@f
@xm

)a
(x)=

N∑
j=1
Vj f(xj)C(x)

@W (x − s)
@sm

∣∣∣∣
s= xj

It can be seen that (@f=@xm)a �= @fa=@xm.
Remark 1
By applying formula (7), the discrete derivative computed at the particle position xi is

∇f(xi)a =
N∑
j=1
Vjf(xj)∇Wij

with ∇Wij=∇W (x−xj)|x= x i . For example, consider a distribution of particles in one dimen-
sion, spaced by dx, and a symmetric kernel with a smoothing length l=dx=2. In this case
Vj=dx. The approximate derivative is then given by df(xi)a=dx=dx (dWi; i+1=dx) (fi+1 −
fi−1). It can be zero for non-trivial solutions such as fi=(−1)i. These oscillating solutions
are spurious modes for the discrete gradient operator. This is an instability issue well known
in the context of �nite di�erence and �nite elements methods, where the gradient is approxi-
mated by centred di�erence schemes. It is interesting to note that the best accuracy that can be
obtained by a two-nodes stencil corresponds to the case where dx (dWi; i+1=dx)=1=2 dx, while
the worst case corresponds to dWi; i+1=dx=0. Clearly, the accuracy is related to the choice
of the kernel and its smoothing length. If the latter is too small there may not be enough
particles in the support domain, of radius �l, which results in low accuracy. In contrast, if it
is too large, local features of the solution may be smoothed out. In our numerical experiments
we will choose �=2 and a constant smoothing length equal to two times the initial particle
spacing.
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STABILIZED SPH METHOD 143

Let us recall the application of the SPH method for the momentum gas dynamic equations:

Du
Dt
+

∇p
�
=0 (9)

where u is the velocity and p the pressure. For a particle i, the nodal acceleration is classically
computed by

Dui
Dt

=−
N∑
j=1
mj

(
pj
�2j
+
pi
�2i

)
∇Wij (10)

In order to damp the oscillations near shocks and to avoid interpenetration of particles, an
arti�cial viscosity was proposed by Monaghan [19] and is given by

	ij=

{−�c̃ij�ij + �c̃ij�2ij if (ui − uj) · (xi − xj)¡0
0 elsewhere

(11)

where � and � are constants, c̃ij is the average of wave speed associated with particles i and
j and �ij= l(ui − uj) · (xi − xj)=((xi − xj)2 + �2). The parameters � and � are often taken,
respectively, as 0:01 and 0 [12]. Thus, the stabilized discrete momentum equations read

Dui
Dt

=−
N∑
j=1
mj

(
pj
�2j
+
pi
�2i
+	ij

)
∇Wij (12)

2.2. The standard SPH method for SWE

One can use an analogy between isentropic compressible �ows and shallow-water �ows,
as water depth h plays a similar role to density �. The SWE are identical to the two-
dimensional gas dynamic equations using this analogy and using as the state law p= gh2=2.
From Equation (12) it follows that the SPH discrete form of the momentum equations (2) is
obtained as

Dui
Dt

=−
N∑
j=1
Vj(g(hj + hi) + 	ij)∇Wij (13)

where hi is the nodal water height of particle i. Note that one of the consistency properties
of the kernel, that is

∑N
j=1 Vj∇Wij=0, is used to obtain a symmetric form of Equation (13).

The global conservation of the linear momentum can be proved using a consistent kernel with
an antisymmetric gradient [19].

Remarks 2

• The continuity equation is implicitly satis�ed since a Lagrangian kinematic approach is
used, i.e. the particle masses are conserved. Water depth h can then be computed using
an SPH approximation

ha(xi)=
N∑
j=1
hjVjWij=

N∑
j=1
mjWij (14)
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144 R. ATA AND A. SOULA�IMANI

where Wij=W (xi − xj). Thus, the smoothed particle height is not equal to the nodal
height.

• It can be noted from (12) and (13) that the acceleration of any particle i is obtained
directly without any smoothing procedure as done for the pressure gradient. In other
words, the left-hand side of (13) is obtained by a ‘collocation’ procedure while the
right-hand side is obtained using a smoothing operation over neighbouring particles. The
next section, shows more clearly how both terms can be consistently treated using a
variational approach.

3. A STABILIZED VARIATIONAL FORMULATION WITH SPH APPROXIMATION

The SPH approximation (6) can be considered as a �nite element interpolation. It can be
written as

fa(x; t)=
N∑
j=1
Nj(x)fj(t) (15)

where Nj(x)=W (x−xj)Vj is the shape function associated with the particle j. However, this
is not an interpolant approximation; i.e.

Nj(xi) �= �ij
and consequently fa(xi) �=fi. This property leads to di�culties in enforcing the Dirichlet
boundary conditions with SPH approximation.

3.1. Variational formulation

Let us now consider a hyperbolic system of the form

Du
Dt
+∇F =0 (16)

where F is a scalar �ux (e.g. for shallow water equations F = gh). A weak variational for-
mulation of Equation (16) is given by∫

�i
Ni(x − xi)

(
Du
Dt

)a
d�−

∫
�i
F ∇Ni(x − xi) d� +

∫

i
FNi(x − xi)n d
=0 (17)

where �i is the compact support, with boundary 
i, associated with particle i, and n its unit
normal vector. When the particle domain is completely embedded in the global computational
domain (interior particle), the integral contour term is zero. Many choices are possible to
approximate �ux F such as a constant equal to F(xi) over �i or a smoothed approximation
Fa(x). The �rst choice involves fewer computations and is classically used in standard SPH
method. We will denote the approximate �ux by Fh(x). In contrast, the SPH time derivative
is obtained by ‘smoothing particles time derivatives’, that is(

Du
Dt

)a
(x)=

N∑
j=1
W (x − xj)Vju̇j (18)
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with u̇j=Duj=Dt the nodal particle acceleration and assuming that the smoothing length is
not a function of time. Then the �rst term of Equation (17) becomes

N∑
j=1

(∫
�i
WiVi WjVj d�

)
u̇j=

N∑
j=1
Mij u̇j

where Mij are the mass matrix coe�cients and Wi=W (x − xi). By applying the classical
lumping procedure to the consistent mass matrix (i.e. concentrating all the neighbouring masses
to particle i),

N∑
j=1
Mij=

∫
�i
WiVi

( ∑
j=1n

WjVj

)
d�

and since
∑N

j=1 WjVj=1, we obtain

N∑
j=1
Mij=

∫
�i
WiVi d�=Vi

If the consistent mass matrix is replaced by its lumped form, Equation (17) becomes

u̇ i −
∫
�i
F ∇W (x − xi) d�=0 (19)

Using a Riemann quadrature to compute the integrals, the above equation is transformed into

u̇ i −
N∑
j=1
VjFh(xj)∇Wji=0

In the case of a consistent kernel with an antisymmetric gradient,
∑N

j=1 VjFh(xi)∇Wij=0 and
∇Wji=−∇Wij. The �nal SPH discrete form corresponding to problem (17) is

u̇ i=−
N∑
j=1
Vj(Fh(xi) + Fh(xj))∇Wij (20)

If we consider the case of a corrected kernel with a compact support as given by (8), then
the variational problem (17) is rewritten as∫

�i
N ci (x − xi)

(
Du
Dt

)a
d�=

∫
�i
F ∇N ci (x − xi) d� (21)

Using the numerical quadrature and considering the fact that
∑N

j=1 Vj∇W c
j =0, the right-hand

side term is developed as

N∑
j=1
Vj(Fh(xj) + Fh(xi))(C(xj)∇W (x − xi)x= xj +W (xj − xi)∇C(xj))

Since W is symmetric, ∇W (x − xi)x= xj =−∇Wij. Applying the lumping procedure for the
left-hand side of (21), the variational discrete problem is stated as

u̇ i=−
N∑
j=1
Vj(Fh(xj) + Fh(xi)) (C(xj)∇Wij −Wij ∇C(xj)) (22)
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Remark 3
It can be concluded that the standard SPH formulation can only be obtained by using a
consistent symmetric kernel having a compact support, by applying a mass lumping and
assuming a discrete �ux Fh(x)=F(xi). Instead of employing a lumped mass matrix, it is
possible to use the consistent one for better time accuracy, but this requires the solution of a
linear system for every particle and for every time step. It is important to emphasize that the
variational formulations (20) and (22) were derived under the assumption of a kernel with a
compact support, so the boundary integral terms were canceled.

3.2. Stablization

Let us now consider the issue of stabilizing the variational SPH formulation (20) or (22). As
previously stated, standard SPH approximation for the �ux gradient yields an instable centred
di�erence scheme. The resulting spurious spatial oscillations may grow in amplitude especially
near discontinuities and thus pollute the whole solution. Some stabilizing mechanism has to be
introduced in the discrete formulation. The following analysis will be based on the analogy
with the approximate Riemann solvers. Such analysis will lead to the development of an
arti�cial viscosity which performs better than that given by Equation (11). We will consider
the following Gaussian and spline kernels, which are corrected later to ensure numerical
consistency, de�ned, respectively, by

W (x − xi)= 1
(l

√
	)d

exp(−
2)

and

W (x − xi)=



4− 6
2 + 3
3 if (06
¡1)

(2− 
)3 if (16
¡2)

0 if (
¿2)

where 
= ‖x − xi‖=l and d is the space dimension. The following relation holds:

nij=
∇Wij
|∇Wij| =

rij
|rij|

where rij=xi − xj is the distance vector between particles i and j.
Equation (20) suggests that the �ux is computed at the mid-distance between particles i

and j, as can be seen more clearly in the following relation:

u̇ i=−∑
j
2Vj

(Fh(xj) + Fh(xi))
2

|∇Wij| nij

In order to introduce a stabilizing mechanism in the �ux computation, a simple Lax–Friedrichs
scheme [22] is used. Thus, the centred �ux (Fh(xj) + Fh(xi))=2 is replaced by

1
2 ((Fh(xj) + Fh(xi))− �(uj − ui) · nij)

with � a characteristic wave speed. Then, the stabilized SPH formulation reads

u̇ i=−∑
j
Vj ∇Wij ((Fh(xj) + Fh(xi))− �(uj − ui) · nij)
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Consequently, the stabilizing term (in the direction nij) corresponds to

	ij=−�(uj − ui) · nij
The unit vector nij can be written using the distance vector rij which leads to the expression

	ij=−�(uj − ui) · rij√
r2ij + �2

(23)

where � is a small constant used to avoid a division by zero.
The above stabilized SPH formulation can be applied in a straightforward way to the shallow

water momentum equations with the �ux function de�ned by F = gh. If its approximation is
taken as Fh(xi)= ghi then the standard SPH method given by (13) is found. But, it is possible
to choose Fh(xi)= ghai to �nd the following formulation:

u̇=−
N∑
j=1
Vj∇Wij(g(hai + haj) + 	ij) (24)

which is expected to be more stable. If a corrected kernel is used, then the above equation
becomes

u̇ i=−
N∑
j=1
Vj (g(hai + h

a
j) + 	ij)(∇Wij −Wij∇C(xj)) (25)

The continuity equation (14) provides the time evolution for the smoothed water height and
not for nodal value hi. Thus the volumes Vj are computed by Vj=mj=haj . The stabilizing term
is given by

	ij=− �ijuij · rij√
r2ij + �2

(26)

where uij= ui−uj is the relative velocity, �ij=(ci+cj)=2 and ci=
√
ghai is the pressure wave

speed. Contrary to Monaghan’s [19] arti�cial viscosity, expression (26) is not dependent on
the smoothing length l or on the free parameter �. Also, it does not vanish for particles
moving in the same or opposite directions, so it prevents the stencil spurious oscillations
from being generated.

4. BOUNDARY CONDITIONS AND TEMPORAL DISCRETIZATION

We will now focus on the treatment of the boundary conditions, especially on solid walls,
using the SPH method. This treatment is not an easy task, as seen above due to the non-
interpolant and Lagrangian character of the SPH formulation and the condition that the kernel
has compact support. Indeed, it is di�cult to ensure a compact support for the particles
in the vicinity of the wall, since there is no control of their motion. We treated simple
geometrical con�gurations. We mainly used two methods: the ghost particles method and the
symmetrization method. We will brie�y introduce these techniques in the following sections.
We have also used the force method of Monaghan [19] but it gave poor results in our
numerical experiments.
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148 R. ATA AND A. SOULA�IMANI

Limit of the
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domain

Ghost
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smoothing
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circle

Part to
symmetrize

Lacking
part

Particlek

Figure 1. Ghost particles method (top), symmetrization method (bottom).

4.1. The Ghost particles method

This method consists of adding new particles around the boundary on the missing part of the
smoothing support (Figure 1). In the case of a perfect slipping boundary condition, the values
of the tangential velocity attributed to these particles are the same as the real ones and the
opposite ones for the normal component. Thus we obtain a purely tangential velocity on the
limit of the domain. In the case of a perfect friction condition, the opposite of the tangential
component is attributed to the ghost particles.

4.2. The symmetrization method

A second method used in our work is symmetrization. This can be described brie�y as
follows: for any particle in the vicinity of the boundary, i.e. with an incomplete smoothing
support, a detection of both the missing part and its symmetric is done (Figure 1). Thus,
the computation of the velocity uses twice the real part which has been detected (in case of
a perfect slipping condition). Consequently, the particle in the vicinity of the boundary will
have a full contribution from its neighbours as if it was in the middle of the domain (the
missing part is compensated for by its corresponding symmetric part). It should be noted that
this second method has a lower cost than the ghost particles method as there are no new
added particles. However, it is used only with simple geometries and might be hard to apply
in case of complex boundaries.
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4.3. Time discretization

An explicit Newmark scheme is used for time discretization. The velocity and the co-ordinates
for a particle i are obtained as

un+1i = uni +�t((1− �)u̇ni + �u̇n+1i ) (27)

xn+1i = xni +�t u
n
i +�t

2(( 12 − �)u̇ni + �u̇n+1i ) (28)

where �t is the time step, u is the velocity, u̇ is the acceleration and the notation un means
u(tn). By choosing the parameters � and � equal, respectively, to 1

4 and
1
2 the scheme corre-

sponds to the trapezoidal rule and is second-order accurate.

Remark 4 (Neighbours search algorithm)
In mesh-based methods, the connectivity between the nodes is known once the grid is given.
In Lagrangian meshless methods such as the SPH, the connectivity between the particles varies
in time. Thus, at each time step, the nearest neighbouring particles for every speci�ed particle
have to be found. This search process takes most of the computing time so it has to be done
e�ciently. For two-dimensional problems we used the octree algorithm [7]. A structured grid
is overlaid on the problem domain (Figure 2). The mesh spacing selected equals the radius
of the support domain, i.e. �l. Thus, for a given particle the cell where it belongs is �rst
determined. The nearest neighbours are then located in that cell and in its eight adjacent cells.
Note that the temporary grid is only used for the neighbours search and not for any numerical
integration purpose.
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Figure 2. The octree algorithm for neighbours searching.
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The overall algorithm applied to SWE can be summarized in the following computational
steps:

• Initial conditions: given h0j ; u0j ; V 0j
• Loop over time steps: Do n=1; : : :
• Loop over particles: Do i=1; N ;

◦ update the list of neighbours,
◦ compute acceleration: u̇n+1 =−∑N

j=1 V
n
j ∇Wij(g(hai + haj) + 	ij)n

◦ update velocity: un+1i = uni +�t=2(u̇ni + u̇
n+1
i ))

◦ update co-ordinates: xn+1i =xni +�tuni +�t2=4(u̇ni + u̇
n+1
i )

◦ update smoothed water heights: hai (n+1) =
∑N

j=1 mj W
(n+1)
ij .

• Enddo, Enddo.

5. NUMERICAL RESULTS

In the following section, some numerical experiments are performed to assess the techniques
discussed previously. The dam break problem in one- and two-dimension is taken as the
primary benchmark test. The initial conditions are shown in Figure 3. The depth of water is
10m upstream and 1m downstream. All results are compared with the exact solution [23].

5.1. The dam break problem in one dimension

The �rst set of numerical experiments is aimed at comparing the results obtained with dif-
ferent variants of the variational formulations and the arti�cial viscosities. The e�ect of the
smoothing length is also assessed. Formulation (25) is considered with the Gaussian kernel
and a smoothing length equals twice the initial spacing of particles dx. The time step used is
�t=0:02 s. All the following �gures show the water height results at time t=30 s. Figure 4
shows a comparison between the results obtained using the new arti�cial viscosity (26) and
the standard one (11). In this test case, 1000 particles are used along with the Gaussian kernel

D
ep

th
 (

m
)

Dam

20001000  
x (m) 

Figure 3. Initial conditions for the dam break problem.
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Figure 4. Comparison between the new and the old viscosities, right �gure is a zoom of the left one.

and formulation (20). The best result for the Monaghan’s viscosity is obtained for �=2:0
and �=0:0. Most of the spurious oscillations are eliminated with the new viscosity, but there
are still a few wiggles near the shock. The plateau is well de�ned, but its value is high,
with a little kick located at the original position of the discontinuity. There is a smearing
of the water height in the rarefaction wave caused more likely by the di�usion e�ect of
the arti�cial viscosity. This could be reduced if a limiter were used as usually adopted in
high-order FV-MUSCL methods.
Formulation (25) is then considered, where the kernel gradient is fully corrected. The results

are shown in (Figure 5). The plateau is now closer to its exact value but there are still a few
oscillations in the shock and the di�usion e�ect is clear. We found experimentally that the best
results were obtained if a partial correction of the kernel gradient was used, i.e. when the
gradient of C(x) in formulation (25) is neglected (Figure 5). This can be explained by
the fact that the numerical integration (collocation method) introduces larger errors to inte-
grate the gradient. Indeed, the corrected kernel is a rational function with a gradient having a
strong non-polynomial character. The shock is sharper and the plateau is closer to the exact
solution.
The next tests were performed with l=3dx (Figure 6). The solutions are clearly more

smeared with best results obtained with the new viscosity and a partially corrected kernel
gradient. A convergence test is �nally considered using l=2dx, the new viscosity and a
partially corrected kernel gradient. Clearly the solution is enhanced by increasing the number
of particles (Figures 7 and 8). The maximum and euclidian error norms are shown in Figure 9,
the rate of convergence seems slow.

5.2. The dam break problems in 2D

Two-dimensional test cases were performed in order to show again the e�ects of the new
stabilization viscosity and the treatment of solid boundary conditions. Two geometrical
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Figure 5. E�ect of the new viscosity in one-dimensional case—smoothing length
l=2�x. Up: no correction on the gradient, middle: incomplete correction, down:

complete correction. Right �gures are the zooms of the left ones.

con�gurations will be presented. We will start with the standard dam in an open rectan-
gular channel. When the geometry is relatively simple, as in the rectangular channel, we used
the ghost particles method. It consists of adding some virtual particles so that the smooth-

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:139–159



STABILIZED SPH METHOD 153

Figure 6. E�ect of the new viscosity in one-dimensional case—smoothing length
l=3�x. Up: no correction on the gradient, middle: incomplete correction, down:

complete correction. Right �gures are the zooms of the left ones.
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Figure 7. E�ect of the number of particles—number of particles between 50 and 300.

Figure 8. E�ect of the number of particles—number of particles between 500 and 2000.
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Figure 9. L1 and Euclidian errors: e�ect of the number of particles.

ing circle is completely full. We used also the symmetrization method which consists on
symmetrizing the lacking part of the smoothing circle to get the condition of perfect slip-
ping. Both methods gave almost the same results. The initial conditions were exactly the
same as those used in the one-dimensional case. The width of the channel was taken 75m.
We used 10 080 equally spaced particles to ful�l these simulations. The simulation time is
30 s and we used a constant time step of 0.02 s. An increase of the time step until 0.1 s
(which corresponds to a maximum CFL condition of almost 0:4) did not a�ect the accuracy
of the solution. The smoothing length was taken as l=2�x where �x is the initial distance
between two successive particles. As it can be seen in Figure 10, the new viscosity gives
better stabilization while there are fewer oscillations, especially in the shock wave and at the
location of the contact discontinuity. The shock position remains slightly high even with a
large number of particles. This discrepancy can be explained by the combined e�ect of the
di�usive e�ect of the new viscosity added to the low-order interpolation used. It is necessary
here to indicate that for more complicated geometries, the results are not encouraging, par-
ticularly, the resolution of the shock is very sensitive to the treatment of the solid boundary
conditions.

5.3. Cylindrical dam break problem

The geometrical setting and the initial conditions for the second test case, referred to as
the cylindrical dam break problem, are described in Figure 11. We used 40 000 particles
corresponding to a structured mesh of (200× 200) squares to achieve this simulation. The
water depth inside the dam is 2.5m and 0.5m outside. The radius of the initial dam is 0.5m.
The domain is a 40× 40m2. The smoothing length is also 2�x and the simulation time is
3.5 s. We used the symmetrization method so that we simulated an in�nite domain. In this
case we see even more clearly the e�ect of the new stabilizing viscosity. Figure 12 shows that

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:139–159



156 R. ATA AND A. SOULA�IMANI

Figure 10. Dam break problem in two-dimensions, e�ect of the new viscosity: (Up)
Water depth (left) and velocity (right) with old viscosity. (Down) Water depth (left)

and velocity (right) with new viscosity.

the water elevation has no more oscillations near the shock and rarefaction waves. Compared
to the high-order �nite volumes results of Toro [22] the SPH results are quite acceptable. For
the �rst two plots, the new SPH scheme appears to deviate from the FVM. This is caused by
the di�usive e�ect of the new viscosity. More precisely, the Lax–Friedrich scheme used does
not include any MUSCL-type reconstruction to reduce the dissipation commonly associated
with �rst-order Godunov-type schemes.
It should be noted that the SPH method is generally much slower compared to FVM.

The CPU time can exceed 50 times that of the FVM. For instance, for 40 000 particles
and for t=3:5 s the CPU time is about 24 min, while for the FVM it takes less then
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Figure 11. Initial conditions and evolution of the circular dam in the time t=0; 0:4; 1:5; 2:5; 3:5 s.

4 min to achieve the simulation with the same number of cells on a 550MHz computer.
We were able to reduce this factor to almost 6 using the octree algorithm for neighbour
sorting [7].
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Figure 12. Cylindrical dam. E�ect of the new viscosity. Comparison with FVM.

6. CONCLUSION

In this study, we focused on the application of the SPH methodology to the shallow water
equations. Standard SPH method has the advantage of being relatively simple to formulate and
to implement. We also discussed on variational formulations using SPH interpolations. The
partially corrected formulation seems to give better results in conjunction with the collocation
numerical integration. A new arti�cial viscosity is properly derived by using an analogy with
an approximate Riemann solver. Several numerical tests have been performed. It is shown
that the new stabilization gives better results than the standard arti�cial viscosity suggested
by Monaghan. For bounded domains, serious di�culties are encountered to enforce Dirichlet
boundary conditions. Symmetrization and ghost particle techniques have been implemented but
do not give good results for irregular boundaries and in presence of shocks. Further studies
are required to make the SPH method more competitive with standard approaches.
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